العوامل المؤثرة على سرعة المعالج

المعالج كيف يعمل المعالج أجزاء المعالج الداخلية العوامل المؤثرة على سرعة المعالج تسريع المعالج فوق السرعة الرسمية

إن سرعة المعالج ليست هي العامل الوحيد الذي يقرر سرعة الحاسب بل المهم أيضاً سرعة حركة البيانات بين الأجزاء المختلفة في الحاسب وبخاصة من وإلى المعالج .

هناك الكثير من الطرق التي تستخدم لقياس سرعة المعالجات كما إن المعالجات المختلفة تتفاوت فيما بينها في المجالات المختلفة ، فقد يتفوق بعضها على الآخر في حسابات الفاصلة العائمة فيما يتفوق الآخر في أشياء أخرى وهكذا . وهناك عاملين أساسيين يتحكمان في أداء معالج ما :

bulletتردد الساعة
bulletمعمارية المعالج

إن مقارنة معالجين بسرعة تردد الساعة لهما فقط يعتبر مقارنة خاطئة إذا كان المعالجين مختلفين في المعمارية ، يمكننا مثلاً أن نقول أن معالج بنتيوم 233 ميجاهيرتز أسرع من معالج بنتيوم 200 ولكن لا يمكنك أن تقول أنه أسرع من بنتيوم 200 ميجاهيرتزMMX لأن جزء من معمارية المعالج تختلف .

وفيما يلي نستعرض أهم الأشياء التي تجعل معالج يكون أسرع من معالج آخر ......

تردد المعالج

يقصد بتردد المعالج تردد الساعة التي يعمل عليها المعالج ، كلما كان تردد الساعة أعلى كلما أصبح بإمكان المعالج عمل أشياء أكبر في وقت أقل ، وتقاس سرعة المعالج بالميجاهيرتز * ، معالج سرعة تردده بـ 200 ميجاهيرتز فإنه قادر على عمل 200 مليون دورة * في الثانية ، أما كم من العمليات الحسابية يتم في هذه الدورة فهذا راجع لبنية المعالج والجيل الذي ينتمي إليه كالتالي :

المعالج

عدد الدورات اللازمة لإتمام عملية جمع واحدة

386

6

486

2

pentium

1 أو أقل

وعندما نقول أن هذا المعالج تردده 400 ميجاهيرتز مثلاً فإن ذلك يعني تردد جميع ما في داخل المعالج ما عدا الذاكرة المخبئية فأحيانا يكون ترددها نصف تردد المعالج.

هذا بالنسبة للمعالج أما الأجزاء الأخرى المتصلة بالمعالج فلا تعمل بهذه السرعة الكبيرة لأنها لو كانت تعمل بهذه السرعة لكانت باهظة الثمن جداً بل تعمل بسرعات أقل من المعالج ، فناقل النظام يعمل في الغالب بتردد ما بين 66 أو 100 ميجاهيرتز وفي بعض المعالجات بتردد 133 وفي المعالج "أثلون" الجديد بتردد 200 ميجاهيرتز ويتوقع أن يزيد إلى 400 ميجاهيرتز.وهناك علاقة تحكم تردد المعالج وتردد الناقل وهي كالتالي:

تردد المعالج = تردد الناقل × عامل المضاعفة (أو يسمى عامل الجداء)

مثال : تردد معالجي هو 450 ميجاهيرتز = 100 هيرتز × 4.5 (عامل الجداء)

وبما أن هناك علاقة بهذا الشكل فهذا معناه أن نقل البيانات بين هذين الجزأين منظم بطريقة تزامنيه - أي أنه في حالة تردد الناقل 100 ميجاهيرتز وتردد المعالج 500 ميجاهيرتز فإن كل 5 دورات للمعالج تقابلها دورة واحدة للناقل ويسمى هذا النوع من النقل بالنقل المتزامن * للبيانات بعكس النقل غير المتزامن * للبيانات الذي لا تكون هناك علاقة ثابتة بينهما .

في العصور القديمة للحاسب ( أيام كانت حاسبات 386 وما قبلها سائدة ) لم نكن نحتاج أن تكون سرعة الناقل تختلف عن سرعة المعالج الداخلية ، حيث كانت سرعة المعالج مجرد 50 ميجاهيرتز أو أقل لذا فقد كانت سرعة المعالج هي نفسها سرعة الناقل ولكن برزت الحاجة لجعل تردد الناقل يختلف عن تردد المعالج منذ حاسبات 486 حين زادت سرعة المعالج عن سرعة الناقل .

وتردد المعالج ليس هو كل شئ فيما يتعلق بالسرعة في معالجة البيانات بل هناك تقنيات أخرى تزيد وتعزز من أداء المعالج ، كما أن هناك تفاوت من معالج وآخر في بعض المجالات من بعضها الآخر ، فقد فقد تجد أن معالج ما يتفوق في حسابات الأرقام الصحيحة ومعالج آخر يتفوق في الذاكرة المخبئية وهكذا .

قوة وحدتي الفاصلة العائمة ووحدة الأرقام الصحيحة

إن وحدة الأرقام الصحيحة لهي جزء مهم من المعالج لأن أغلب عمليات الحاسب تتم في هذا الجزء ، كما يجب الانتباه إلى أن المعالج الذي لديه وحدة أرقام صحيحة ممتازة ليس معناه أن وحدة الفاصلة العائمة عنده ممتازة أيضاً ، إن معالجات شركة إنتل لهي الأفضل حتى الآن في مجال الفاصلة العائمة .

تستعمل الفاصلة العائمة في برامج الألعاب والجداول الإلكترونية ، بينما تستخدم وحدة الأعداد الصحيحة في التطبيقات الأخرى .

سرعة الناقل

إن الناقل السريع يضمن كما قلنا توصيل البيانات بالسرعة التي تجعل المعالج لا يكون في حالة انتظار * ، ويعتبر كلاً من تردد الناقل وعرضه مهماً ، وفيما يكون عرض ناقل النظام 64 بت في المعالجات الحديثة جميعها فإن تردد الناقل هو الذي يحكم به على سرعة الناقل:

سرعة الناقل ( بت / ثانية ) = عرض الناقل ( بت ) × تردده (هيرتز)

تبريد المعالجات

أي قطعة إلكترونية في أي جهاز ومنها المعالج تحتاج لأن تكون ضمن مدى معين من درجات الحرارة التي افترض الصانع أنها ستعمل فيه وإذا زادت درجة الحرارة عن هذا الحد فإنها :

bulletتقصر من عمر المعالج
bulletتبطئ أدائه
bulletتتسبب بأخطاء في الحسابات
bulletتتسبب بتوقف الحاسب عن العمل بشكل متكرر (التعليق)
bulletقد يعيد الحاسب تشغيل نفسه بدون سبب
bulletقد تحدث أشياء غريبة مثل أخطاء في القرص الصلب
bulletفي أحيان نادرة تؤدي لعطب المعالج كلياً .

أشياء مثل هذه قد لا تخطر في بال مهندس الصيانة خاصة في بلاد حارة ومع وجود التقدم التكنولوجي الكبير في بلادنا العربية !!!

إن هذه الحرارة ناتجة عن مرور التيار الكهربائي في الترانزسترات ، وكلما كانت فولتية المعالج ومعماريته أقل كلما كانت الحرارة الناتجة أقل لذا فإن المعالجات المختلفة تنتج كميات مختلفة من الحرارة فالمعالج بنتيوم الثالث مثلاً ينتج كمية من الحرارة أكبر من بنتيوم ، و تقاس كمية الحرارة الناتجة من المعالج بـ"الواط" .

بدأت مشكلة التبريد منذ المعالج 486 وجميع المعالجات اللاحقة تتطلب طريقة للتبريد ، أما المعالجات 386 وما قبله فلم يكن يلزمه التبريد لأن عدد الترانزسترات لم تكن كبيرة مم يجعل درجة حرارته معتدلة .

إن الطريقة المتبعة في تبريد المعالجات الحديثة هي باستعمال المبدد الحراري ومروحة التبريد :

bulletالمبدد الحراري(*) : وهو عبارة عن شريحة من المعدن تلتصق بسطح المعالج (مربعة الشكل أو مستطيلة عادة إلا أن بعضها شبه دائري ) يخرج منها بشكل عمودي عدد كبير من العواميد المعدنية (*) ، وفائدة هذا المبدد الحراري هو أن الحرارة الناتجة من المعالج تنتشر في القضبان العمودية ذات المساحة السطحية الكبيرة فتقوم بتبديد الحرارة وكلما كان المبدد الحراري أكبر كان أفضل ، ويصنع المبدد الحراري عادة من الألمونيوم لأنه موصل جيد للحرارة.
bulletمروحة التبريد : وعملها هو دفع الهواء بين العواميد المعدنية للمبدد الحراري بحيث يمكن تبديد قدر أكبر من الحرارة .

في الصورة على اليسار المعالج "أثلون" وفي خلفيته عواميد المبدد الحراري وفي منتصفها مروحة التبريد . بالمناسبة في بعض الأحيان قد يستخدم المبدد الحراري بدون مروحة تبريد وهذا يقلل التكلفة ويجعل المعالج غير معرض للتلف بسبب توقف المروحة عن العمل (طبعاً في هذه الحالة يجب استعمال مبدد حراري كبير جداً ).

يجب على المبدد الحراري أن يكون ملتصقاً بسطح المعالج تماماً ، في بعض المعالجات لا يكون المبدد ملتصقاً به من المصنع بل يثبت فوق المعالج بمثبتات معدنية خاصة (معالجات بنتيوم هي أفضل مثال ) ، وفي هذه الحالة إذا ثبتت المبدد الحراري على المعالج مباشرة فإنه لا بد أن يكون هناك كمية بسيطة جداً من الهواء بين المعالج والمبدد الحراري فيجب في هذه الحالة وضع مادة بيضاء خاصة تسمى heat sink compound وتملأ هذه المادة الفراغ البسيط وتسمح للحرارة بأن تنتقل بكفاءة من المعالج .

لاحظ أن حرارة المعالج أثناء العمل تعتمد على كفاءة المبدد الحراري وعلى كمية الحرارة التي ينتجها المعالج وأيضاً على درجة حرارة علبة النظام ، ولا يمكن لأي مبدد حراري أن يحفظ درجة حرارة المعالج إلى أقل من درجة حرارة علبة النظام ، هذا لأن الهواء الذي يدفع بين عواميد المبدد الحراري مأخوذ من علبة النظام نفسها . ما أريد أن أقول هنا أن حرارة علبة النظام مهمة لتبريد المعالج وكذلك تصميم العلبة حيث أنه في علب النظام الحديثة من نوع ATX تساعد العلبة نفسها في تبريد المعالج حيث يقع المعالج تحت مزود الطاقة ليكون في مجرى الهواء وهذا يساعد كثيراً في تفادي مشكلة الحرارة .

إن أحد أسباب ارتفاع درجة حرارة المعالج هو وجود الأوساخ داخل المبدد الحراري مما يمنع الهواء من المرور فيه ويسمح بارتفاع درجة الحرارة ، حدث لي ذلك ذات مرة وبتنظيف المبدد الحراري انتهت المشكلة . من المفيد تنظيف الحاسب من الداخل كل فترة .

بعض المعالجات مثل بنتيوم أوفر درا يف من شركة إنتل (*) لديها مروحة داخلية في الرقاقة ، إذا حصل وعطبت هذه المروحة فإن المعالج يحمي نفسه بإنقاص تردده إلى 25 ميجاهيرتز إلى أن تستبدل المروحة .

لدينا أيضاً الحاسبات المحمولة التي ليس فيها مراوح لأن هذه المراوح تستهلك الكثير من الطاقة التي هم في أشد الحاجة للاقتصاد في استخدامها في هذه النوعية من الحاسبات لأن مصدر الطاقة فيها هو البطاريات . فلتخفيف استخدام البطاريات يلجأ المهندسون إلى تخفيض الفولتية التي يعمل عليها المعالج مما يساهم في تخفيض استهلاك الطاقة كثيراً ويقلل من مشاكل التبريد . كما يستخدمون برامج خاصة لحفظ الطاقة عن طريق البيوس وذلك بإطفاء أجزاء كبيرة من عتاد الحاسب حينما لا يكون في حالة استعمال لفترة طويلة ، ويستعمل هذا النظام اليوم على كل الحاسبات الشخصية .

هناك أشكال متطورة من مبردات المعالجات ، هناك مثلاً ما يسمى peltier cooler وهو جهاز على شكل شريحة توضع على سطح المعالج وتستخدم الكهرباء كي تقوم بتبريد المعالج ويثبت المبدد الحراري من أعلى ، تقوم هذه الأجهزة بالتبريد بكفاءة تامة ولكنها غالية الثمن ولا تستعمل في العادة إلا من قبل الذين يشغلون معالجاتهم أعلى من تردد الساعة الذي يفترض بهم تشغيلها عنده لأن المعالج في هذه الحالة ينتج كميات كبيرة من الحرارة .

ومن أكثر أشكال تبريد المعالجات إثارة هو استعمال " راديترات " مثل تلك المستعملة في السيارات أو التبريد بواسطة "كومبريسور" مثل الموجود في أجهزة التبريد .

جهاز لتبريد المعالج بالمياه ( يشبه الراديتور)

بعض اللوحات الأم تزود بترمومترات لقياس درجة حرارة المعالج أو بأجهزة لمراقبة التيار الكهربائي الذاهب لمروحة تبريد المعالج وبذلك تتمكن من اكتشاف أي خطأ أو مشكلة قد تؤدي لزيادة درجة حرارة المعالج .

صناعة المعالجات

 

لا تحتكر شركة IBM صناعة المعالجات كما قد تتصور ، بل إن أشهر وأحدث المعالجات هما من شركتي إنتل و AMD بينما تفرغت شركة IBM لعمل معالجات لمنصات أخرى غير الحاسب الشخصي .

تتم صناعة المعالجات من عدة مصنعين أشهرهم شركتي إنتل و AMD ، وقد كانت معالجات شركة إنتل لفترة طويلة جداً هي الشركة الرئيسية المصنعة للمعالجات بينما كانت باقي الشركات تكتفي بتقليدها إلى أن بدأت شركة AMD المنافسة الجدية بطرح معالجها المسمى "أثلون" حيث أصبحت تعتبر الآن لاعب أساسي في السوق .

تمر صناعة المعالج بالكثير من الخطوات الطويلة والمكلفة ، إن صناعة معالج حديث قد تستغرق 90 يوماً من العمل (طبعاً تتم صناعة المعالجات بالجملة ) باستخدام تقنيات عالية جداً . ويتكون الترانزستور من مادة شبه موصلة غالباً ما تكون السيليكون .

إن أول خطوة لصناعة المعالج هي جلب السيليكون (موجود بكثرة في الرمال الصحراوية البيضاء ) ومعالجته بشكل خاص ودقة تامة ليصبح في النهاية على شكل كريستال حجم الواحدة منها يقارب العشرين سنتيمتراً ، وتقطع بواسطة أدوات خاصة إلى شرائح كل شريحة منها سمكها أقل من 1 مليمتر - تخيل - وقطرها 20 سم ( عملية دقيقة جداً ) وتستعمل كل واحدة من هذه الرقاقات بعد المعالجة في صنع ما يقرب من 140 معالج يعطب منها حوالي 20 . وتكفي الكريستالة الواحدة لصنع الآلاف من المعالجات وكلما كانت شريحة السليكون أقل سمكاً كلما تمكنا من إنتاج معالجات أكثر بنفس كتلة الكريستال وهذا يخفض التكلفة .

تأتي بعد ذلك مرحلة تصميم المعالج (على الورق) وهذه عملية تأخذ الكثير من الوقت وقد تستهلك جهد عمل المئات بل الآلاف من المهندسين لشهور أو سنين .ثم بعد ذلك تبدأ عملية التصنيع باستخدام أدوات دقيقة جداً وأجهزة حاسب آلي ضخمة جداً ومكلفة جداً ويتم تصنيع الترانزسترات باستخدام الضوء ومواد حساسة للضوء على شكل طبقات تختلف باختلاف المعالج وحسب تعقيده لتنتج لنا من كل رقاقة كما قلت المئات من المعالجات ، فتقطع هذه الرقاقة إلى مئات القطع لتكون كل قطعة معالج قائم بذاته .

ثم تأتي بعد ذلك عملية وضع كل رقاقة من هذه الرقاقات داخل غلاف لها حتى تحميها من العوامل الخارجية وحتى يسهل حملها والتعامل معها ، ولكل معالج طريقته في التغليف ويعتبر التغليف أيضاً عملية معقدة كون عدد الإبر كبير (المئات) .

طبعاً بعض القطع من هذه الرقاقات قد لا تعمل نتيجة كون بعض أجزاء السيليكون معطوب ، أيضاًَ قد يعمل بعضها أسرع من الأخرى لذا نجد الاختلاف في سرعات الساعة للمعالجات . كما إن نسبة المعالجات المعطوبة من هذه العملية ككل تؤثر في سعر المعالج ، وكلما شرع المهندسون في تصميم معالج جديد كان في البداية غالي الثمن بسبب قلة الخبرة التي تجعل نسبة المعالجات المعطوبة قليلة جداً ، ومع الوقت تقل النسبة وينخفض سعر المعالج .

يحرص مصنعي المعالجات على تصميم معالجات من شرائح سيليكون صغيرة بقدر الإمكان لأن ذلك يعني نسبة أقل من المعالجات المعطوبة وتخفيض التكلفة ، وتخفيض الحرارة الناتجة . و المعالجات تصبح أكثر قوة مع الوقت ، ولكي تكون أكثر قوة لابد أن تحوي عدد أكبر من الترانزسترات في حجم صغير ، فتستعمل معماريات أصغر للمعالج كي تتيح لنا ذلك .

تغليف المعالجات

إن الغرض من التغليف هو أن نجعل شريحة السيليكون سهلة الحمل وآمنة من العوامل الخارجية وأن توصل من الخارج مع اللوحة الأم حتى يتواصل المعالج مع الأجزاء الأخرى للحاسب.

كان أول معالج من نظام IBM يستخدم نظام تغليف يدعى DIP ولكن هذا الطريقة لم تعد تنفع في المعالجات الأحدث بسبب العدد الكبير للإبر الذي يستدعي أن يكون المعالج طويل جداً حتى يكفي كل هذا العدد من الإبر لأن الإبر في هذا النوع من التغليف كانت تخرج من طرفين فقط من أطراف المعالج .

لذا طور النوع الثاني من التغليف يسمى PGA وفيه يوضع المعالج داخل علبة مربعة أو مستطيلة الشكل قليلة الارتفاع وتخرج إبر المعالج من الأسفل وتدخل في مقبس خاص على اللوحة الأم ، ويوفر هذا النوع من التغليف خروج عدد كبير من الإبر من أسفل الرقاقة . وكان التغليف نفسه يصنع أحياناً من البلاستيك لذا يسمى P PGA ، وأحياناً يصنع من السيراميك C PGA (يعتبر البلاستيك أفضل من السيراميك ) .

ازدادت الحاجة لعدد أكبر من الإبر مرة ثانية فتم تعديل الـ PGA وسمي SPGA ليتسع لعدد أكبر من الإبر ، ومعالج بنتيوم غلف بهذه الطريقة . أما المعالج بنتيوم برو فقد تم تغليفه بطريقة خاصة باستخدام طريقة اسمها "Dual Pattern PGA " حيث تحوي هذا التغليف ليس فقط المعالج بل أيضاً الذاكرة المخبئية المدمجة به .

 

كان المعالج بنتيوم برو معالج مكلف كون الذاكرة المخبئية كانت داخل تغليف المعالج فقررت إنتل إزالتها ، ولكن وضع الذاكرة المخبئية على اللوحة الأم - مثل المعالج بنتيوم سيجعل منها ذاكرة بطيئة فما هو الحل ؟

كان الحل هو التغليف الجديد SEC حيث وضع المعالج مع الذاكرة العشوائية على لوحة إلكترونية مطبوعة PCB وتغليفهما داخل كار ترج يتصل مع اللوحة الأم بواسطة مقبس خاص به .

المعالج بنتيوم الثاني : المعالج (في المنتصف) مع الذاكرة المخبئية على لوحة إلكترونية مطبوعة أما الكارترج فهو منزوع لتوضيح الأجزاء الداخلية

أما في المفكرات فالأمر يختلف ، تنتج شركة إنتل حزمة تحوي المعالج والذاكرة المخبئية وطقم الرقاقات في قطعة واحدة لتقليل الوزن والمساحة .

كانت المعالجات المغلفة بطريقة PGA تركب في اللوحة الأم بطريقة خاصة وكان من الصعب على معظم المستخدمين أن يستبدلوا معالجاتهم بأنفسهم إلى أن تم استعمال مقبس يسمح بسهولة إزالة وتركيب المعالج وصار يدعى مقبس ZIF ومعناه "إدخال المعالج بدون قوة " .

تزوير المعالجات

توجد في الأسواق معالجات مزورة ، تقوم عصابات التزوير بتغيير الرقم المحفور بالليزر والذي يدل على تردد المعالج واستبداله بسرعة أعلى للساعة ، فمثلاً قد يجلبون معالج بنتيوم 166 ويمحون ال166 ويكتبون بدلاً منها 200 ، وخذ يا زيد المعالج المزور بسعر المعالج 200 ميجاهيرتز .

انتشرت هذه الطريقة في المعالج بنتيوم بشكل كبير جداً ، وهناك برامج موجودة في السوق لكشف هذا التلاعب كما يمكن جلبها من الإنترنت إيضاً .

أجيال المعالجات

منذ أن أنتج أول حاسب آلي شخصي وحتى الآن حدث تطور هائل في صناعة الحاسبات ، وأصبحت الحاسبات الجديدة أسرع بمراحل كثيرة من المعالجات الأولى ، وقد صدرت العديد من المعالجات عبر تلك السنين ، وكان كل معالج يفوق سابقه سرعة وكان - وما زال - قانون مور سيد الموقف * ، وكانت المعالجات تصدر بتحسينات رئيسية بين الحين والآخر مما أصطلح على تسميتها بأجيال المعالجات .

وكان أول معالج لحاسب شخصي لنظام "آي بي أم " هو " 8086 " من شركة إنتل وهو ما يعتبر الجيل الأول للمعالجات ، وتوالت بعده المعالجات : الجيل الثاني "80286" ويعبر عنه اختصاراً "286" والجيل الثالث "80386" أو "386" وهكذا ، ويختلف كل جيل عن الجيل السابق له باختلافات كبيرة غالباً ، وتأتي المعالجات الأحدث أسرع وأقل استهلاكاً للطاقة وكذلك بدعم للبرمجيات الجديدة .

ولم تكن شركة واحدة بعينها محتكرة لصناعة المعالجات ، بل تنافست عدة شركات في ذلك ، ولكن شركة إنتل هي الرائدة في هذا المجال ، وكانت معالجاتها دائماً هي القمة وتتنافس بقية الشركات على تقليدها ، وربما يكون هذا الحال قد تغير في الآونة الأخيرة بتفوق شركة AMD بإصدارها معالجها "أثلون" حيث تفوقت على إنتل بالأداء. وينتج هؤلاء المصنعون معالجات متوافقة مع إنتل ، وتعمل هذه المعالجات حقاً بشكل طيب إلا إنه في بعض الأحيان قد تكون هناك بعض الإشكاليات في العمل مع بعض البرامج ، عموماً هذه الإشكاليات لا تهم المستخدم العادي ويمكنك بكل طمأنينة شراء إحدى هذه المعالجات .

ونستعرض في هذا الجدول الاختلافات بين هذه الأجيال منذ الجيل الأول ......

المعالج كيف يعمل المعالج أجزاء المعالج الداخلية العوامل المؤثرة على سرعة المعالج تسريع المعالج فوق السرعة الرسمية

الصفحة الرئيسية | الأعضاء | تعليم ودروس | مشاكل وحلول | مسابقات | بحث | معلومات الاتصال

 حقوق النشر أو عبارات الملكية الأخرى هنا.
إذا كان لديك مشكلة أو سؤال بخصوص صفحة ويب هذه، اتصل بـ [email protected]